Estimating the parameters of lifetime distributions under progressively Type-II censoring from fuzzy data
نویسندگان
چکیده
منابع مشابه
Statistical Inference for the Lomax Distribution under Progressively Type-II Censoring with Binomial Removal
This paper considers parameter estimations in Lomax distribution under progressive type-II censoring with random removals, assuming that the number of units removed at each failure time has a binomial distribution. The maximum likelihood estimators (MLEs) are derived using the expectation-maximization (EM) algorithm. The Bayes estimates of the parameters are obtained using both the squared erro...
متن کاملBayesian Two-Sample Prediction with Progressively Type-II Censored Data for Some Lifetime Models
Prediction on the basis of censored data is very important topic in many fields including medical and engineering sciences. In this paper, based on progressive Type-II right censoring scheme, we will discuss Bayesian two-sample prediction. A general form for lifetime model including some well known and useful models such asWeibull and Pareto is considered for obtaining prediction bounds ...
متن کاملInference Under Progressively Type II Right-Censored Sampling for Certain Lifetime Distributions
In this paper, estimation of the parameters of a certain family of two-parameter lifetime distributions based on progressively Type II right censored samples (including ordinary Type II right censoring) is studied. This family, of reverse hazard distributions, includes the Weibull, Gompertz and Lomax distributions. A new type of parameter estimation, named inverse estimation, is introduced for ...
متن کاملInference for the location and scale parameters of the Rayleigh distribution under type-II double censoring
This article has no abstract.
متن کاملOptimal sample size and censoring scheme in progressively type II censoring based on Fisher information for the Pareto distribution
One of the most common censoring methods is the progressive type-II censoring. In this method of censoring, a total of $n$ units are placed on the test, and at the time of failure of each unit, some of the remaining units are randomly removed. This will continue to record $m$ failure times, where $m$ is a pre-determined value, and then the experiment ends. The problem of determining the optimal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics, Statistics and Informatics
سال: 2016
ISSN: 1336-9180
DOI: 10.1515/jamsi-2016-0004